Share Email Print

Proceedings Paper

A distributed wireless sensor network system for transportation safety and security
Author(s): Mashrur Chowdhury; Kuang-Ching Wang; Ryan Fries; Yongchang Ma; Devang Bagaria
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Given the anticipated increases in highway traffic, the scale and complexity of the traffic infrastructure will continue to grow progressively in time and in distributed geographical areas. To assure transportation efficiency, safety, and security in the presence of such growth, it is critical to identify an infrastructure development methodology that can adapt to expansions while assuring reliable operation for both centralized monitoring and distributed management. In this paper, a wireless sensor network design methodology is presented, aimed at providing effective distributed surveillance, anomaly detection, and coordinated response. The proposed methodology integrates state-of-the-art traffic sensors, with flexibly programmable controller devices that can integrate with the available traffic control equipments. The system methodology provides a paradigm in which sensors and controllers can be progressively incorporated and programmed to autonomously coordinate with peer sensors and a hierarchy of controllers to detect, notify, and react to anomalous events. Since the system can tolerate failure of parts of the system, as the network connectivity continues to increase, the proposed sensor network will have positive implications on evacuation plans during natural disasters or terrorist attacks. To illustrate the design methodology and usage, a simulated system along a freeway corridor in South Carolina was constructed in an integrated microscopic traffic and wireless sensor network simulation platform, in which distributed incident detection and response functions were implemented. The test results, including detection and false alarm rates and wireless communication latencies, are analyzed to identify insights of the system's operation and potential enhancement strategies.

Paper Details

Date Published: 7 May 2007
PDF: 9 pages
Proc. SPIE 6538, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VI, 653807 (7 May 2007); doi: 10.1117/12.722629
Show Author Affiliations
Mashrur Chowdhury, Clemson Univ. (United States)
Kuang-Ching Wang, Clemson Univ. (United States)
Ryan Fries, Clemson Univ. (United States)
Yongchang Ma, Clemson Univ. (United States)
Devang Bagaria, Clemson Univ. (United States)

Published in SPIE Proceedings Vol. 6538:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VI
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top