Share Email Print

Proceedings Paper

Inductively coupled MEMS-based micro RFID transponder
Author(s): Hong M. Lu; Chuck Goldsmith; Jeong-Bong Lee
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we present the design, fabrication and characterization of an inductively-coupled miniaturized RFID transponder using MEMS technology. The micromachined miniaturized transponder consists of a small solenoid inductor with a high permeability magnetic core, a chip capacitor and a RFID chip. They are integrated onto a micromachined SU-8 polymer substrate and it is operated in the frequency range of 13.56 to 27 MHz. Induced voltages of up to 4 V were obtained with a miniaturized 500 nH transponder coil from a 2.2 μH reader coil at 5 mm distance based on a resonant magnetic coupling mechanism. The assembled transponder was tested using a commercial RFID reader at 13.56 MHz and successful communication was established at a distance of 10 mm.

Paper Details

Date Published: 15 May 2007
PDF: 8 pages
Proc. SPIE 6589, Smart Sensors, Actuators, and MEMS III, 65890W (15 May 2007); doi: 10.1117/12.722096
Show Author Affiliations
Hong M. Lu, Univ. of Texas at Dallas (United States)
Chuck Goldsmith, MEMtronics Inc. (United States)
Jeong-Bong Lee, Univ. of Texas at Dallas (United States)

Published in SPIE Proceedings Vol. 6589:
Smart Sensors, Actuators, and MEMS III
Thomas Becker; Carles Cané; N. Scott Barker, Editor(s)

© SPIE. Terms of Use
Back to Top