Share Email Print

Proceedings Paper

Temperature dependence of electrical conductance in a single porous SnO2 nanoribbon
Author(s): Yu Wang; Idalia Ramos; Jorge Santiago-Avilés
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Porous SnO2 nanoribbons, with their width and thickness of around 20&mgr;m and 20nm, respectively, have been fabricated from the metallo-organic dimethyldineodecanoate tin using electrospinning and thermal decomposition techniques. The electrical conductance of one synthesized single ribbon has been measured using the two-probe method in atmosphere following a cycle of heating from 300 to 660K and subsequent cooling from 660K to 300K. During the heating, the conductance, G is not so sensitive to the temperature below 380K and, above that, follows an Arrhenius relation with a thermal activation energy of 0.918±0.004 eV until 660K; upon cooling, G follows the same Arrhenius relation until 570K and, below that, observes another Arrhenius relation with its activation energy decreasing to 0.259±0.006eV down to 300K. After a cycle of heating and cooling, G returns to a value higher than its initial one. The Arrhenius relations are attributed to the surface adsorption and desorption of moisture and oxygen, and the G hysteresis between 300 and 380K is attributed to the partial replacement of adsorbed oxygen by moisture because of the porous nature of the surface.

Paper Details

Date Published: 22 May 2007
PDF: 5 pages
Proc. SPIE 6591, Nanotechnology III, 65910E (22 May 2007); doi: 10.1117/12.722040
Show Author Affiliations
Yu Wang, Univ. of Puerto Rico, Humacao (United States)
Univ. of Pennsylvania (United States)
Idalia Ramos, Univ. of Puerto Rico, Humacao (United States)
Jorge Santiago-Avilés, Univ. of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 6591:
Nanotechnology III
Fernando Briones, Editor(s)

© SPIE. Terms of Use
Back to Top