Share Email Print
cover

Proceedings Paper

The role of nanotechnology and nano and micro-electronics in monitoring and control of cardiovascular diseases and neurological disorders
Author(s): Vijay K. Varadan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Nanotechnology has been broadly defined as the one for not only the creation of functional materials and devices as well as systems through control of matter at the scale of 1-100 nm, but also the exploitation of novel properties and phenomena at the same scale. Growing needs in the point-of-care (POC) that is an increasing market for improving patient's quality of life, are driving the development of nanotechnologies for diagnosis and treatment of various life threatening diseases. This paper addresses the recent development of nanodiagnostic sensors and nanotherapeutic devices with functionalized carbon nanotube and/or nanowire on a flexible organic thin film electronics to monitor and control of the three leading diseases namely 1) neurodegenerative diseases, 2) cardiovascular diseases, and 3) diabetes and metabolic diseases. The sensors developed include implantable and biocompatible devices, light weight wearable devices in wrist-watches, hats, shoes and clothes. The nanotherapeutics devices include nanobased drug delivery system. Many of these sensors are integrated with the wireless systems for the remote physiological monitoring. The author's research team has also developed a wireless neural probe using nanowires and nanotubes for monitoring and control of Parkinson's disease. Light weight and compact EEG, EOG and EMG monitoring system in a hat developed is capable of monitoring real time epileptic patients and patients with neurological and movement disorders using the Internet and cellular network. Physicians could be able to monitor these signals in realtime using portable computers or cell phones and will give early warning signal if these signals cross a pre-determined threshold level. In addition the potential impact of nanotechnology for applications in medicine is that, the devices can be designed to interact with cells and tissues at the molecular level, which allows high degree of functionality. Devices engineered at nanometer scale imply a controlled manipulation of individual molecules and atoms that can interact with the human body at sub-cellular level. The recent progress in microelectronics and nanosensors crates very powerful tools for the early detection and diagnosis. The nanowire integrated potassium and dopamine sensors are ideal for the monitoring and control of many cardiovascular diseases and neurological disorders. Selected movies illustrating the applications of nanodevices to patients will be shown at the talk.

Paper Details

Date Published: 11 April 2007
PDF: 12 pages
Proc. SPIE 6528, Nanosensors, Microsensors, and Biosensors and Systems 2007, 652813 (11 April 2007); doi: 10.1117/12.721762
Show Author Affiliations
Vijay K. Varadan, Univ. of Arkansas (United States)
Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 6528:
Nanosensors, Microsensors, and Biosensors and Systems 2007
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top