Share Email Print

Proceedings Paper

Low-cost VLSI architecture design for forward quantization of H.264/AVC
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The H.264/AVC (Advanced Video Codec) is the latest standard for video coding. It assumes a scalar forward quantizer performed at the encoder which can be implemented directly in integer arithmetic. An efficient architecture for the computation of forward quantization of H.264/AVC is presented in this paper. It uses a modification of the quantization operation which reduces the arithmetic operations, and a truncated Booth multiplier based on adaptative statistical approach, which reduces the hardware. The JM reference software's C code has been re-written to analyze the effect of new algorithm and of truncated Booth multiplier. Simulations made up over popular test sequences used in video standardization show the validity of this approach. These results demonstrate that, at low QP, the PSNR is improved between a maximum of +0.81db and a minimum of 0.31db, with a slight increase in the Bit Rate being around 0.8%. Finally, a suitable architecture for VLSI implementation is presented, which reduces in a 26% the area, 32% the power and 21% the critical path delay in comparison with classical implementation. Moreover, it also reduces the area and increase the speed in comparison with architectures presented in references.

Paper Details

Date Published: 10 May 2007
PDF: 12 pages
Proc. SPIE 6590, VLSI Circuits and Systems III, 65900Y (10 May 2007); doi: 10.1117/12.721493
Show Author Affiliations
G. A. Ruiz, Univ. de Cantabria (Spain)
J. A. Michell, Univ. de Cantabria (Spain)

Published in SPIE Proceedings Vol. 6590:
VLSI Circuits and Systems III
Valentín de Armas Sosa; Kamran Eshraghian; Félix B. Tobajas, Editor(s)

© SPIE. Terms of Use
Back to Top