Share Email Print

Proceedings Paper

The electrical origin of the 1/f electrical noise in solid-state devices and integrated circuits
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Contrarily to current theories based on hypothetical traps where charge carriers can translocate to, this paper gives an explanation for 1/f electrical noise in solid-state devices based on well known electrical effects taking place in these devices. A parasitic capacitor and the backgating effect of its thermal noise, both overlooked in the course of the years, are the basis of the above explanation. The above effect produces a resistance noise with a Lorentzian spectrum in any unbiased resistor. As soon as the resistor is biased, this spectrum is scattered into a continuous set of Lorentzian noise terms that synthesize 1/f noise over a frequency band that is an exponential function of the bias voltage VDS expressed in thermal units VT. This is due to the exponential dependence of the dynamical resistance in most semiconductor junctions. A VDS=180mV is thus enough to give 1/f noise over three decades at room temperature. This unexpected and non-linear feature, where the spectrum of this noise results from the own bias used to measure it, has kept 1/f noise as a puzzling and enigmatic noise for more than eighty years. The above theory, born in the solid-state field, can also be generalized to other devices where two orthogonal forces or energy gradients appear while electrical noise is being measured.

Paper Details

Date Published: 10 May 2007
PDF: 12 pages
Proc. SPIE 6590, VLSI Circuits and Systems III, 65901O (10 May 2007); doi: 10.1117/12.721175
Show Author Affiliations
José-Ignacio Izpura, Univ. Politécnica de Madrid (Spain)

Published in SPIE Proceedings Vol. 6590:
VLSI Circuits and Systems III
Valentín de Armas Sosa; Kamran Eshraghian; Félix B. Tobajas, Editor(s)

© SPIE. Terms of Use
Back to Top