Share Email Print
cover

Proceedings Paper

Adaptive constrained signal detector for hyperspectral images
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An algorithm called the constrained signal detector (CSD) was recently introduced for the purpose of target detection in hyperspectral images. The CSD assumes that hyperspectral pixels can be modeled as linear mixtures of material signatures and stochastic noise. In theory, the CSD is superior to the popular orthogonal subspace projection (OSP) technique. The CSD requires knowledge of the spectra of the background materials in a hyperspectral image. But in practice the background material spectra are often unknown due to uncertainties in illumination, atmospheric conditions, and the composition of the scene being imaged. In this paper, estimation techniques are used to create an adaptive version of the CSD. This adaptive algorithm uses training data to develop a description of the image background and adaptively implement the CSD. The adaptive CSD only requires knowledge of the target spectrum. It is shown through simulations that the adaptive CSD performs nearly as well as the CSD operating with complete knowledge of the background material spectra. The adaptive CSD is also tested using real hyperspectral image data and its performance is compared to OSP.

Paper Details

Date Published: 7 May 2007
PDF: 9 pages
Proc. SPIE 6565, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, 656505 (7 May 2007); doi: 10.1117/12.720766
Show Author Affiliations
Steven E. Johnson, Air Force Institute of Technology (United States)
Michael T. Eismann, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 6565:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top