Share Email Print

Proceedings Paper

High-efficiency UV laser for space-based wind lidar
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Lidar based measurements of clear air winds from space requires a high efficiency UV laser transmitter. We have developed a prototype of the required transmitter that uses third harmonic generation from a diode pumped Nd:YAG laser to achieve the desired UV output. Our approach uses a single-frequency Nd:YAG master oscillator/power amplifier as the primary pump source. The system is diode pumped and conductively cooled for compatibility with space-based operation. We use a variation of the ramp and fire technique to injection seed the master oscillator. The space-qualifiable electronics provide user control of the injection seeding, diode pump power, and operational modes of the laser. The 1064 nm laser transmitter has been demonstrated to achieve a true system level wall plug efficiency of 6.4% for a q-switched output power of 44 W at 50 Hz. We use high efficiency doubling and sum frequency mixing of the 1064 nm pump to generate 24 W of 355 nm output. This result implies a third harmonic optical to optical generation efficiency of 55% and a system level efficiency of 3.5%. In this paper we report on the design and testing of this laser transmitter.

Paper Details

Date Published: 3 May 2007
PDF: 8 pages
Proc. SPIE 6555, Sensors and Systems for Space Applications, 655504 (3 May 2007); doi: 10.1117/12.720251
Show Author Affiliations
Floyd E. Hovis, Fibertek, Inc. (United States)
Jinxue Wang, Raytheon Space and Airborne Systems (United States)

Published in SPIE Proceedings Vol. 6555:
Sensors and Systems for Space Applications
Richard T. Howard; Robert D. Richards, Editor(s)

© SPIE. Terms of Use
Back to Top