Share Email Print
cover

Proceedings Paper

Score-based SAR ATR performance model with operating condition dependencies
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Automatic target recognition (ATR) performance models are needed for online adaptation and for effective use (e.g., in fusion) of ATR products. We present empirical models focused on synthetic aperture radar (SAR) ATR algorithms. These models are not ATR algorithms in themselves; rather they are models of ATRs developed with the intention of capturing the behavior, at least on a statistical basis, of a reference ATR algorithm. The model covariates (or inputs) might include the ATR operating conditions (sensor, target, and environment), ATR training parameters, etc. The model might produce performance metrics (Pid, Pd, Pfa, etc.) or individual ATR decisions. "Scores" are an intermediate product of many ATRs, which then go through a relatively simple decision rule. Our model has a parallel structure, first modeling the score production and then mapping scores to model outputs. From a regression perspective, it is impossible to predict individual ATR outcomes for all possible values of this covariate space since samples are only available for small subsets of the total space. Given this limitation, and absent a purely theoretical model meaningfully matched to the true complexity of this problem, our approach is to examine the empirical behavior of scores across various operating conditions, and identify trends and characteristics of the scores that are apparently predictable. Many of the scores available for training are in so-called standard operating conditions (SOC), and a far smaller number are in so-called extended operating conditions (EOCs). The influence of the EOCs on scores and ATR decisions are examined in detail.

Paper Details

Date Published: 7 May 2007
PDF: 12 pages
Proc. SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, 65680Z (7 May 2007); doi: 10.1117/12.719426
Show Author Affiliations
Vladimir I. Kaufman, BAE Systems AIT (United States)
Timothy D. Ross, Air Force Research Lab. (United States)
Eugene M. Lavely, BAE Systems AIT (United States)
Erik P. Blasch, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 6568:
Algorithms for Synthetic Aperture Radar Imagery XIV
Edmund G. Zelnio; Frederick D. Garber, Editor(s)

© SPIE. Terms of Use
Back to Top