Share Email Print
cover

Proceedings Paper

Robust modulation classification techniques using cumulants and hierarchical neural networks
Author(s): John A. DeClouet; Mort Naraghi-Pour
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The problem of automatic modulation classification is to identify the modulation type of a received signal from the signal parameters. Modulation classification has both military and civilian applications and has been the subject of intensive research for more than two decades. In this paper we use a hierarchical neural network in which the first network identifies the modulation class while a second set of networks identify the constellation size (order) of that modulation class. The set of features we use include normalized standard deviations of amplitude, phase and frequency, as well as the fourth and sixth order cumulants of the signal samples. Identifying the constellation size of quadrature amplitude modulation (QAM) has been particularly difficult in the past. In this paper we introduce two new approaches for computing the features of a QAM signal. The first uses the concatenated in- phase and quadrature components of the signal to compute the features. The second method maps the in-phase and quadrature components to the first quadrant of the constellation by calculating the absolute value of each separately. The mean of the resulting constellation points is then subtracted before calculating the features. Simulation results are presented for classification of several digital modulation schemes including FSK, PSK, ASK and QAM. Our results show that the proposed method significantly improves the classification error.

Paper Details

Date Published: 7 May 2007
PDF: 11 pages
Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 65671J (7 May 2007); doi: 10.1117/12.719349
Show Author Affiliations
John A. DeClouet, Louisiana State Univ. (United States)
Mort Naraghi-Pour, Louisiana State Univ. (United States)


Published in SPIE Proceedings Vol. 6567:
Signal Processing, Sensor Fusion, and Target Recognition XVI
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top