Share Email Print

Proceedings Paper

SAR image formation using phase-history data from nonuniform aperture
Author(s): Lam Nguyen; Jeffrey Sichina
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Synthetic aperture radar (SAR) imagery is formed using radar data collected from a moving platform (aircraft, vehicle, human, etc.). The radar transmits and receives backscatter signals in the down-range direction at a fixed pulse repetition interval (PRI) while the platform moves along the cross-range direction (called along-track) to generate a synthetic aperture. In the ideal situation, the platform moves at a constant speed and as a result, the radar will collect the phase-history data that are uniformly sampled along the aperture. However, in many situations the radar platform cannot be kept at a constant speed, e.g. a helicopter maneuvering over an imaging area for surveillance. The problem is even worse in the case of urban warfare with human-borne radar. A soldier moves at his own speed and creates erratic aperture sections with phase-history data that are either sparse or dense. The collected SAR data in such situation will result in SAR imagery with severe artifacts that might prevent us from detecting targets of interest. In this paper, we will present the SAR imagery of non-uniform aperture data formed using the backprojection image formation algorithm. Although the backprojection image former is well suited to an arbitrary radar aperture, the SAR image artifacts are obvious from the nonuniform aperture. Using the nonuniform aperture phase-history data, we interpolate the data using a uniform grid along the aperture. We will show the resulting imagery with reduced artifacts. We use both simulated data and the Army Research Lab BoomSAR data to illustrate the artifacts generated by nonuniform sampling and the improvement using this interpolation technique.

Paper Details

Date Published: 3 May 2007
PDF: 10 pages
Proc. SPIE 6547, Radar Sensor Technology XI, 65470F (3 May 2007); doi: 10.1117/12.719276
Show Author Affiliations
Lam Nguyen, Army Research Lab. (United States)
Jeffrey Sichina, Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 6547:
Radar Sensor Technology XI
James L. Kurtz; Robert J. Tan, Editor(s)

© SPIE. Terms of Use
Back to Top