Share Email Print
cover

Proceedings Paper

Study on adaptive PID algorithm of hydraulic turbine governing system based on fuzzy neural network
Author(s): Liangbao Tang; Jumin Bao
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The conventional hydraulic turbine governing system can't automatically modulate PID parameters according to the dynamic process of the system, the generator speed is unstable and the mains frequency fluctuation results in. To solve the above problem, the fuzzy neural network (FNN) and the adaptive control are combined to design an adaptive PID algorithm based on the fuzzy neural network which can effectively control the hydraulic turbine governing system. Finally, the improved mathematic model is simulated. The simulation results are compared with the conventional hydraulic turbine's. Thus the validity and superiority of the fuzzy neural network PID algorithm have been proved. The simulation results show that the algorithm not only retains the functions of fuzzy control, but also provides the ability to approach to the non-linear system. Also the dynamic process of the system can be reflected more precisely and the on-line adaptive control is implemented. The algorithm is superior to other methods in response and control effect.

Paper Details

Date Published: 30 October 2006
PDF: 6 pages
Proc. SPIE 6358, Sixth International Symposium on Instrumentation and Control Technology: Sensors, Automatic Measurement, Control, and Computer Simulation, 63584F (30 October 2006); doi: 10.1117/12.718183
Show Author Affiliations
Liangbao Tang, Guilin Univ. of Electronic Technology (China)
Jumin Bao, Guilin Univ. of Electronic Technology (China)


Published in SPIE Proceedings Vol. 6358:
Sixth International Symposium on Instrumentation and Control Technology: Sensors, Automatic Measurement, Control, and Computer Simulation
Jiancheng Fang; Zhongyu Wang, Editor(s)

© SPIE. Terms of Use
Back to Top