Share Email Print

Proceedings Paper

Development of amperometric glucose sensors with heterostructured nanowire arrays for continuous subcutaneous monitoring
Author(s): Devesh C. Deshpande; Hargsoon Yoon; Aung M. Khaing; Vijay K. Varadan
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This research discusses the development of a novel amperometric sensor to detect glucose concentrations in solution without the need for an artificial mediator. Since the intended goal of this research is to develop a glucose sensor to subcutaneously monitor glucose levels in the body, it is important that the sensor does not require a mediator, since such chemicals would prove harmful to the body. Nanowire arrays were used as the sensing electrode in place of planar electrodes to utilize the unique properties of nanostructures. Heterostructured Au/Pt nanowires were used so that the dual roles of covalent immobilization of glucose oxidase and oxidation of hydrogen peroxide could be carried out by the sensing electrode. Glucose oxidase was immobilized on these nanowires using self- assembled monolayers of alkanethiols and using a conducting polypyrrole matrix. Results indicate that the unique structure of the sensing electrode delivers superior performance with regards to sensitivity and response time in the absence of an artificial mediator. The development of such a sensor would assist the treatment of patients in an effective and timely manner. Ongoing efforts will help understand the process fabrication and analysis in detail.

Paper Details

Date Published: 11 April 2007
PDF: 8 pages
Proc. SPIE 6528, Nanosensors, Microsensors, and Biosensors and Systems 2007, 652819 (11 April 2007); doi: 10.1117/12.717668
Show Author Affiliations
Devesh C. Deshpande, Univ. of Arkansas (United States)
Hargsoon Yoon, Univ. of Arkansas (United States)
Aung M. Khaing, Univ. of Arkansas (United States)
Vijay K. Varadan, Univ. of Arkansas (United States)

Published in SPIE Proceedings Vol. 6528:
Nanosensors, Microsensors, and Biosensors and Systems 2007
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top