Share Email Print

Proceedings Paper

Novel concepts for ultrahigh-speed quantum-dot VCSELs and edge-emitters
Author(s): N. N. Ledentsov; F. Hopfer; A. Mutig; V. A. Shchukin; A. V. Savel'ev; G. Fiol; M. Kuntz; V. A. Haisler; T. Warming; E. Stock; S. S. Mikhrin; A. R. Kovsh; C. Bornholdt; H. Eisele; M. Dähne; N. D. Zakharov; P. Werner; D. Bimberg
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advanced types of QD media allow an ultrahigh modal gain, avoid temperature depletion and gain saturation effects, when used in high-speed quantum dot (QD) vertical-cavity surface-emitting lasers (VCSELs). An anti-guiding VCSEL design reduces gain depletion and radiative leakage, caused by parasitic whispering gallery VCSEL modes. Temperature robustness up to 100°C for 0.96 - 1.25 &mgr;m range devices is realized in the continuous wave (cw) regime. An open eye 20 Gb/s operation with bit error rates better than 10-12 has been achieved in a temperature range 25-85°C without current adjustment. A different approach for ultrahigh-speed operation is based on a combination of the VCSEL section, operating in the CW mode with an additional section of the device, which is electrooptically modulated under a reverse bias. The tuning of a resonance wavelength of the second section, caused by the electrooptic effect, affects the transmission of the system. The second cavity mode, resonant to the VCSEL mode, or the stopband edge of the second Bragg reflector can be used for intensity modulation. The approach enables ultrahigh speed signal modulation. 60GHz electrical and ~35GHz optical (limited by the photodetector response) bandwidths are realized.

Paper Details

Date Published: 7 February 2007
PDF: 15 pages
Proc. SPIE 6468, Physics and Simulation of Optoelectronic Devices XV, 64681O (7 February 2007); doi: 10.1117/12.717248
Show Author Affiliations
N. N. Ledentsov, Technische Univ. Berlin (Germany)
Abraham Ioffe Physical Technical Institute (Russia)
F. Hopfer, Technische Univ. Berlin (Germany)
A. Mutig, Technische Univ. Berlin (Germany)
V. A. Shchukin, Technische Univ. Berlin (Germany)
Abraham Ioffe Physical Technical Institute (Russia)
A. V. Savel'ev, Technische Univ. Berlin (Germany)
Abraham Ioffe Physical Technical Institute (Russia)
G. Fiol, Technische Univ. Berlin (Germany)
M. Kuntz, Technische Univ. Berlin (Germany)
V. A. Haisler, Technische Univ. Berlin (Germany)
Institute of Semiconductor Physics (Russia)
T. Warming, Technische Univ. Berlin (Germany)
E. Stock, Technische Univ. Berlin (Germany)
S. S. Mikhrin, NL-Nanosemiconductor GmbH (Germany)
A. R. Kovsh, NL-Nanosemiconductor GmbH (Germany)
C. Bornholdt, Fraunhofer Institut für Nachrichtentechnik (Germany)
H. Eisele, Technische Univ. Berlin (Germany)
M. Dähne, Technische Univ. Berlin (Germany)
N. D. Zakharov, Max-Planck Institute (Germany)
P. Werner, Max-Planck Institute (Germany)
D. Bimberg, Technische Univ. Berlin (Germany)

Published in SPIE Proceedings Vol. 6468:
Physics and Simulation of Optoelectronic Devices XV
Marek Osinski; Fritz Henneberger; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top