Share Email Print
cover

Proceedings Paper

MEMS for medical technology applications
Author(s): Thomas Frisk; Niclas Roxhed; Göran Stemme
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper gives an in-depth description of two recent projects at the Royal Institute of Technology (KTH) which utilize MEMS and microsystem technology for realization of components intended for specific applications in medical technology and diagnostic instrumentation. By novel use of the DRIE fabrication technology we have developed side-opened out-of-plane silicon microneedles intended for use in transdermal drug delivery applications. The side opening reduces clogging probability during penetration into the skin and increases the up-take area of the liquid in the tissue. These microneedles offer about 200µm deep and pain-free skin penetration. We have been able to combine the microneedle chip with an electrically and heat controlled liquid actuator device where expandable microspheres are used to push doses of drug liquids into the skin. The entire unit is made of low cost materials in the form of a square one cm-sized patch. Finally, the design, fabrication and evaluation of an integrated miniaturized Quartz Crystal Microbalance (QCM) based "electronic nose" microsystem for detection of narcotics is described. The work integrates a novel environment-to-chip sample interface with the sensor element. The choice of multifunctional materials and the geometric features of a four-component microsystem allow a functional integration of a QCM crystal, electrical contacts, fluidic contacts and a sample interface in a single system with minimal assembly effort, a potential for low-cost manufacturing, and a few orders of magnitude reduced in system size (12*12*4 mm3) and weight compared to commercially available instruments. The sensor chip was successfully used it for the detection of 200 ng of narcotics sample.

Paper Details

Date Published: 15 February 2007
PDF: 9 pages
Proc. SPIE 6465, Microfluidics, BioMEMS, and Medical Microsystems V, 646513 (15 February 2007); doi: 10.1117/12.716948
Show Author Affiliations
Thomas Frisk, Royal Institute of Technology (Sweden)
Niclas Roxhed, Royal Institute of Technology (Sweden)
Göran Stemme, Royal Institute of Technology (Sweden)


Published in SPIE Proceedings Vol. 6465:
Microfluidics, BioMEMS, and Medical Microsystems V
Ian Papautsky; Wanjun Wang, Editor(s)

© SPIE. Terms of Use
Back to Top