Share Email Print

Proceedings Paper

Self-sensing and self-actuation response of carbon nanotube composites
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Changing dielectric properties of an elastically deformed solid material is called dielectrostriction. This physical response enables a concept of self-sensing in dielectric materials such as polymers and polymeric composites. In addition, dielectrostriction response is governed by same material parameters as the electrostriction effect which is suitable for self-actuation applications. Designed planar capacitor sensor is employed for monitoring dielectrostriction effect without mechanical contact with a loaded specimen. Such sensor can also be arranged in a rosette to directly obtain the principal values of the stress/strain and the principal directions. This study investigates dielectrostriction and electrostriction effects in carbon nanotube (CNT) composites. Preliminary results show tenfold increase in dielectrostriction response of nanocomposites having 2 vol. % of randomly distributed CNTs. Current study targets CNT composites having microstructure modified using applied electric field for optimizing sensing and actuation performances.

Paper Details

Date Published: 20 April 2007
PDF: 10 pages
Proc. SPIE 6526, Behavior and Mechanics of Multifunctional and Composite Materials 2007, 65261W (20 April 2007); doi: 10.1117/12.716195
Show Author Affiliations
Ho Young Lee, Univ. of Wisconsin, Madison (United States)
Yuri M. Shkel, Univ. of Wisconsin, Madison (United States)

Published in SPIE Proceedings Vol. 6526:
Behavior and Mechanics of Multifunctional and Composite Materials 2007
Marcelo J. Dapino, Editor(s)

© SPIE. Terms of Use
Back to Top