Share Email Print
cover

Proceedings Paper

Beams with controllable flexural stiffness
Author(s): Farhan Gandhi; Sang-Guk Kang
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper describes a method to vary the flexural bending stiffness of a multi-layered beam. The multi-layered beam comprises of a base layer with polymer layers on the upper and lower surfaces, and stiff cover layers. Flexural stiffness variation is based on the concept that when the polymer layer is stiff, the cover layers are strongly coupled to the base beam and the entire multi-layered beam bends as an integral unit. In effect, we have a "thick" beam with contributions from all layers to the flexural bending stiffness. On the other hand, if the shear modulus of the polymer layers is reduced, the polymer layers shear as the base beam undergoes flexural bending, the cover layers are largely decoupled from the base, and the overall flexural bending stiffness correspondingly reduces. The shear modulus of the polymer layer is reduced by increasing its temperature through glass transition. This is accomplished by using embedded ultrathin electric heating blankets. From experiments conducted using two different polymer materials, polymer layer thicknesses and beam lengths the flexural stiffness of the multi-layered beam at low temperature was observed to be between 2-4 times greater than that at high temperature.

Paper Details

Date Published: 27 April 2007
PDF: 8 pages
Proc. SPIE 6525, Active and Passive Smart Structures and Integrated Systems 2007, 65251I (27 April 2007); doi: 10.1117/12.716038
Show Author Affiliations
Farhan Gandhi, The Pennsylvania State Univ. (United States)
Sang-Guk Kang, Korea Advanced Institute of Science and Technology (South Korea)


Published in SPIE Proceedings Vol. 6525:
Active and Passive Smart Structures and Integrated Systems 2007
Yuji Matsuzaki; Mehdi Ahmadian; Donald J. Leo, Editor(s)

© SPIE. Terms of Use
Back to Top