Share Email Print

Proceedings Paper

High-speed parameter estimation algorithms for nonlinear smart materials
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A fundamental step in the model construction for ferroelectric, ferromagnetic, and ferroelastic materials is the estimation or identification of material parameters given measurements of the material response. Moreover, actuator and/or material properties may be a function of operating conditions which can necessitate the re-estimation of parameters if conditions change significantly. In this paper, we focus on the development of highly robust and efficient identification algorithms for use in industrial, aeronautic and aerospace applications. Following a discussion of present and future applications, we summarize the homogenized energy model used to characterize hysteresis and constitutive nonlinearities in these compounds. We next discuss the parameter estimation problem and detail algorithms used to speed implementation. The validity of the framework is illustrated through comparison with experimental data.

Paper Details

Date Published: 18 April 2007
PDF: 10 pages
Proc. SPIE 6523, Modeling, Signal Processing, and Control for Smart Structures 2007, 65230S (18 April 2007); doi: 10.1117/12.715763
Show Author Affiliations
Jon M. Ernstberger, North Carolina State Univ. (United States)
Ralph C. Smith, North Carolina State Univ. (United States)

Published in SPIE Proceedings Vol. 6523:
Modeling, Signal Processing, and Control for Smart Structures 2007
Douglas K. Lindner, Editor(s)

© SPIE. Terms of Use
Back to Top