Share Email Print

Proceedings Paper

Adaptive vibration energy harvesting
Author(s): Sam Behrens; John Ward; Josh Davidson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.

Paper Details

Date Published: 27 April 2007
PDF: 12 pages
Proc. SPIE 6525, Active and Passive Smart Structures and Integrated Systems 2007, 652508 (27 April 2007); doi: 10.1117/12.715519
Show Author Affiliations
Sam Behrens, CSIRO Energy Technology (Australia)
John Ward, CSIRO Energy Technology (Australia)
Josh Davidson, James Cook Univ. (Australia)

Published in SPIE Proceedings Vol. 6525:
Active and Passive Smart Structures and Integrated Systems 2007
Yuji Matsuzaki; Mehdi Ahmadian; Donald J. Leo, Editor(s)

© SPIE. Terms of Use
Back to Top