Share Email Print
cover

Proceedings Paper

Mechanical machining and metrology at micro/nano scale
Author(s): Steven Y. Liang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Micro-scale machining performed in a mechanical manner is an ultra-precision material removal process to achieve micron form accuracy and a few nanometer finish. It has gained increasing importance in the manufacture of optical, mechanical, biomedical, and electronic components with intricate details in many industry and consumer products, both as a means to produce final products and to create dies and molds for further mass production. The backbone of science and technology for the success of machining at such fine length scales hinges on the understanding of microstructual machining mechanics, precision control of machine tool motions, miniaturization of cutters, miniaturization of machine tools, and the availability of high resolution metrology. This paper examines a number of recent research developments at Georgia Tech in these areas. On microstructual mechanics, cutting at submicron depth to control brittle-ductile transition of material will be discussed. On precision machine control, compensation of micrometer multitooth runout error through the chip load servo will be illustrated. On cutter miniaturization, the concept of magnetic single-grit abrasive as a micro cutting tool for submicron dimensional accuracy will be presented. On machine tool miniaturization, the downsizing of machining center and its associated benefits on precision will be elaborated. On metrology, a micro laser-based system and acoustic emission systems are presented for the measurement of micro cutting tool locations. The presentation of these topics will focus on the underlying fundamentals of fine scale machining and their implications toward ultra-precision engineering and micro/nano manufacturing.

Paper Details

Date Published: 25 October 2006
PDF: 8 pages
Proc. SPIE 6280, Third International Symposium on Precision Mechanical Measurements, 628002 (25 October 2006); doi: 10.1117/12.715241
Show Author Affiliations
Steven Y. Liang, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 6280:
Third International Symposium on Precision Mechanical Measurements
Kuang-Chao Fan; Wei Gao; Xiaofen Yu; Wenhao Huang; Penghao Hu, Editor(s)

© SPIE. Terms of Use
Back to Top