Share Email Print
cover

Proceedings Paper

Reduction of attenuation effects in 3D transrectal ultrasound images
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Ultrasound (US) is one of the most used imaging modalities today as it is cheap, reliable, safe and widely available. There are a number of issues with US images in general. Besides reflections which is the basis of ultrasonic imaging, other phenomena such as diffraction, refraction, attenuation, dispersion and scattering appear when ultrasound propagates through different tissues. The generated images are therefore corrupted by false boundaries, lack of signal for surface tangential to ultrasound propagation, large amount of noise giving rise to local properties, and anisotropic sampling space complicating image processing tasks. Although 3D Transrectal US (TRUS) probes are not yet widely available, within a few years they will likely be introduced in hospitals. Therefore, the improvement of automatic segmentation from 3D TRUS images, making the process independent of human factor is desirable. We introduce an algorithm for attenuation correction, reducing enhancement/shadowing effects and average attenuation effects in 3D US images, taking into account the physical properties of US. The parameters of acquisition such as logarithmic correction are unknown, therefore no additional information is available to restore the image. As the physical properties are related to the direction of each US ray, the 3D US data set is resampled into cylindrical coordinates using a fully automatic algorithm. Enhancement and shadowing effects, as well as average attenuation effects, are then removed with a rescaling process optimizing simultaneously in and perpendicular to the US ray direction. A set of tests using anisotropic diffusion are performed to illustrate the improvement in image quality, where well defined structures are visible. The evolution of both the entropy and the contrast show that our algorithm is a suitable pre-processing step for segmentation tasks.

Paper Details

Date Published: 12 March 2007
PDF: 8 pages
Proc. SPIE 6513, Medical Imaging 2007: Ultrasonic Imaging and Signal Processing, 65130Z (12 March 2007); doi: 10.1117/12.711083
Show Author Affiliations
Hans Frimmel, CSIRO (Australia)
Westmead Hospital (Australia)
Ctr. for Medical Radiation Physics, Univ. of Wollongong (Australia)
Oscar Acosta, CSIRO (Australia)
Westmead Hospital (Australia)
Aaron Fenster, Robarts Imaging Research Lab. (Canada)
Sébastien Ourselin, CSIRO (Australia)


Published in SPIE Proceedings Vol. 6513:
Medical Imaging 2007: Ultrasonic Imaging and Signal Processing
Stanislav Y. Emelianov; Stephen A. McAleavey, Editor(s)

© SPIE. Terms of Use
Back to Top