Share Email Print

Proceedings Paper

Dynamic-thresholding level set: a novel computer-aided volumetry method for liver tumors in hepatic CT images
Author(s): Wenli Cai; Hiroyuki Yoshida; Gordon J. Harris
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Measurement of the volume of focal liver tumors, called liver tumor volumetry, is indispensable for assessing the growth of tumors and for monitoring the response of tumors to oncology treatments. Traditional edge models, such as the maximum gradient and zero-crossing methods, often fail to detect the accurate boundary of a fuzzy object such as a liver tumor. As a result, the computerized volumetry based on these edge models tends to differ from manual segmentation results performed by physicians. In this study, we developed a novel computerized volumetry method for fuzzy objects, called dynamic-thresholding level set (DT level set). An optimal threshold value computed from a histogram tends to shift, relative to the theoretical threshold value obtained from a normal distribution model, toward a smaller region in the histogram. We thus designed a mobile shell structure, called a propagating shell, which is a thick region encompassing the level set front. The optimal threshold calculated from the histogram of the shell drives the level set front toward the boundary of a liver tumor. When the volume ratio between the object and the background in the shell approaches one, the optimal threshold value best fits the theoretical threshold value and the shell stops propagating. Application of the DT level set to 26 hepatic CT cases with 63 biopsy-confirmed hepatocellular carcinomas (HCCs) and metastases showed that the computer measured volumes were highly correlated with those of tumors measured manually by physicians. Our preliminary results showed that DT level set was effective and accurate in estimating the volumes of liver tumors detected in hepatic CT images.

Paper Details

Date Published: 30 March 2007
PDF: 8 pages
Proc. SPIE 6514, Medical Imaging 2007: Computer-Aided Diagnosis, 65142W (30 March 2007); doi: 10.1117/12.710117
Show Author Affiliations
Wenli Cai, Massachusetts General Hospital (United States)
Harvard Medical School (United States)
Hiroyuki Yoshida, Massachusetts General Hospital (United States)
Harvard Medical School (United States)
Gordon J. Harris, Massachusetts General Hospital (United States)
Harvard Medical School (United States)

Published in SPIE Proceedings Vol. 6514:
Medical Imaging 2007: Computer-Aided Diagnosis
Maryellen L. Giger; Nico Karssemeijer, Editor(s)

© SPIE. Terms of Use
Back to Top