Share Email Print
cover

Proceedings Paper

Hybrid geodesic region-based curve evolutions for image segmentation
Author(s): Shawn Lankton; Delphine Nain; Anthony Yezzi; Allen Tannenbaum
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper we present a gradient descent flow based on a novel energy functional that is capable of producing robust and accurate segmentations of medical images. This flow is a hybridization of local geodesic active contours and more global region-based active contours. The combination of these two methods allows curves deforming under this energy to find only significant local minima and delineate object borders despite noise, poor edge information, and heterogeneous intensity profiles. To accomplish this, we construct a cost function that is evaluated along the evolving curve. In this cost, the value at each point on the curve is based on the analysis of interior and exterior means in a local neighborhood around that point. We also demonstrate a novel mathematical derivation used to implement this and other similar flows. Results for this algorithm are compared to standard techniques using medical and synthetic images to demonstrate the proposed method's robustness and accuracy as compared to both edge-based and region-based alone.

Paper Details

Date Published: 16 March 2007
PDF: 10 pages
Proc. SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 65104U (16 March 2007); doi: 10.1117/12.709700
Show Author Affiliations
Shawn Lankton, Georgia Institute of Technology (United States)
Delphine Nain, Georgia Institute of Technology (United States)
Anthony Yezzi, Georgia Institute of Technology (United States)
Allen Tannenbaum, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 6510:
Medical Imaging 2007: Physics of Medical Imaging
Jiang Hsieh; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top