Share Email Print
cover

Proceedings Paper

Extension of multidimensional microscopy to ultrasensitive applications with maximum-likelihood analysis
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Multidimensional fluorescence microscopy is finding service in forefront biological studies that require separation of images from different fluorophores. For example, commercial microscopes are available with multi-band analog detectors and user-friendly software for "linear unmixing" of species with overlapping emission spectra. To extend such techniques to ultrasensitive and single-molecule applications, we have developed a custom-built microscope, which incorporates two tunable-wavelength picosecond dye lasers for pulse-interleaved laser excitation, angle-tuned reflection of the laser beams from narrow-band Raman notch filters to introduce epi-illumination and provide strong rejection of scattered laser wavelengths, diffraction-limited confocal imaging with 3-dimensional piezo-scanning, an adjustable prism spectrometer for high-throughput resolution of collected fluorescence into 4 spectral bands, and a 4-channel high-quantum efficiency avalanche diode for sub-nanosecond-resolved single-photon detection. Custom software enables multi-band fluorescence correlation spectroscopy and identification of photon bursts for single-molecule detection. For unmixing of spectrally-overlapping signatures for ultrasensitive molecular imaging applications, we find that maximum-likelihood analysis can out-perform least-squares-based linear unmixing in the regime of low photon numbers per spectral/temporal channel. Also, the likelihood surface provides the confidence of the parameter estimates and the covariance of the species contributions. Monte Carlo simulations show that bias in the results of the analysis, which stems from the constraint that photon numbers should be positive, becomes more pronounced at low signal levels, for both maximum-likelihood and least-squares based unmixing.

Paper Details

Date Published: 14 February 2007
PDF: 12 pages
Proc. SPIE 6443, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV, 64430N (14 February 2007); doi: 10.1117/12.702217
Show Author Affiliations
Lloyd M. Davis, Univ. of Tennessee Space Institute (United States)
Guoqing Shen, Univ. of Tennessee Space Institute (United States)


Published in SPIE Proceedings Vol. 6443:
Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV
Jose-Angel Conchello; Carol J. Cogswell; Tony Wilson, Editor(s)

© SPIE. Terms of Use
Back to Top