Share Email Print
cover

Proceedings Paper

Experimental evaluation of angularly variable fiber geometry for targeting depth-resolved reflectance from layered epithelial tissue phantoms
Author(s): Adrien Ming Jer Wang; Vengadesan Nammalvar; Rebekah Anna Drezek
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The aim of the present study focuses on experimentally demonstrating the efficacy of using angularly-variable fiber geometry to achieve the desired tissue-layer selection and probing depths with the further objective of enhancing the sensitivity and specificity of spectral diagnosis in stratified architectures that resemble human cervical epithelia. The morphological and biochemical features of epithelial tissue vary in accordance with tissue depths; consequently, the accuracy of spectroscopic diagnosis of epithelial dysplasia may be enhanced by probing the optical properties of this tissue. When correlated to cellular dysplasia, layer-specific changes in tissue optical properties may be deciphered by reflectance spectroscopy coupled with angularly-variable fiber geometry. This study addresses the utility of using such angularly-variable fiber geometry for resolving spatially-specific spectral signatures of tissue pathology. This is accomplished by interpreting and analyzing the reflectance spectra of increasingly dysplastic epithelial tissue in two-layer epithelial phantoms. Spectral sensitivity to tissue abnormalities in the epithelial layer is significantly improved as the obliquity of the collection fibers increases from 0 to 40 degrees. Conversely, conventionally orthogonal fibers are found to be more sensitive to changes in stromal tissue properties.

Paper Details

Date Published: 14 February 2007
PDF: 12 pages
Proc. SPIE 6433, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VII, 64330B (14 February 2007); doi: 10.1117/12.702005
Show Author Affiliations
Adrien Ming Jer Wang, Rice Univ. (United States)
Vengadesan Nammalvar, Rice Univ. (United States)
Rebekah Anna Drezek, Rice Univ. (United States)


Published in SPIE Proceedings Vol. 6433:
Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VII
Israel Gannot, Editor(s)

© SPIE. Terms of Use
Back to Top