Share Email Print

Proceedings Paper

Complex beam sculpting with tunable acoustic gradient index lenses
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Spatial Light Modulators (SLMs) have been successfully used for beam sculpting in the area of optical manipulation, however in some applications their associated pixelation, slow switching speeds, and incident power limitations can be undesirable. An alternative device that overcomes these problems is the Tunable Acoustic Gradient index (TAG) lens. This device uses acoustically induced density and refractive index variations within a fluid to spatially phase modulate a transmitted laser beam. The acoustic waves within the fluid are generated via a piezoelectric transducer. When driven with a frequency-modulated signal, arbitrary optical phase modulation patterns can be generated at regular time intervals. The resulting sculpted beam is best observed using a pulsed laser synchronized to the frequency-modulated signal of the TAG lens. As this device is purely analog, there is no pixelation in the phase modulation pattern. Also, because the only major requirement on the fluid is that it be transparent, it is possible to select fluids with high damage thresholds and high viscosities. High damage thresholds allow the TAG lens to be used in high power applications that would be unsuitable for an SLM. High viscosities provide fast damping of transient density variations and increase switching speeds between patterns. Discussion here will be limited to axially symmetric beam sculpting, however the results can be generalized to asymmetric cases.

Paper Details

Date Published: 9 February 2007
PDF: 9 pages
Proc. SPIE 6483, Complex Light and Optical Forces, 64830I (9 February 2007); doi: 10.1117/12.701099
Show Author Affiliations
Euan McLeod, Princeton Univ. (United States)
Craig B. Arnold, Princeton Univ. (United States)

Published in SPIE Proceedings Vol. 6483:
Complex Light and Optical Forces
David L. Andrews; Enrique J. Galvez; Gerard Nienhuis, Editor(s)

© SPIE. Terms of Use
Back to Top