Share Email Print

Proceedings Paper

FEM investigation of leaky modes in hollow core photonic crystal fibers
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Hollow-core holey fibers are promising candidates for low-loss guidance of light in various applications, e.g., for the use in laser guide star adaptive optics systems in optical astronomy. We present an accurate and fast method for the computation of light modes in arbitrarily shaped waveguides. Maxwell's equations are discretized using vectorial finite elements (FEM). We discuss how we utilize concepts like adaptive grid refinement, higher-order finite elements, and transparent boundary conditions for the computation of leaky modes in photonic crystal fibers. Further, we investigate the convergence behavior of our methods. We employ our FEM solver to design hollow-core photonic crystal fibers (HCPCF) whose cores are formed from 19 omitted cladding unit cells. We optimize the fiber geometry for minimal attenuation using multidimensional optimization taking into account radiation loss (leaky modes).

Paper Details

Date Published: 5 February 2007
PDF: 8 pages
Proc. SPIE 6480, Photonic Crystal Materials and Devices VI, 64800M (5 February 2007); doi: 10.1117/12.700495
Show Author Affiliations
Jan Pomplun, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)
Ronald Holzlöhner, European Southern Observatory (Germany)
Sven Burger, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)
Lin Zschiedrich, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)
Frank Schmidt, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)

Published in SPIE Proceedings Vol. 6480:
Photonic Crystal Materials and Devices VI
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top