Share Email Print
cover

Proceedings Paper

Development of low cost instrumentation for non-invasive detection of Helicobacter pylori
Author(s): A. Kannath; H. N. Rutt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new clinical diagnostic instrument for urea breath test (UBT) based non-invasive detection of Helicobacter Pylori is presented here. Its compact and low cost design makes it an economical and commercial alternative for the more expensive Isotope Ratio Mass Spectrometer (IRMS). The instrument is essentially a two channel non-dispersive IR spectrometer that performs high precision ratio measurements of the two carbon isotopomers (12CO2 and 13CO2) present in exhaled breath. A balanced absorption system configuration was designed where the two channel path lengths would roughly be in the ratio of their concentrations. Equilibrium between the transmitted channel intensities was maintained by using a novel feedback servo mechanism to adjust the length of the 13C channel cell. Extensive computational simulations were performed to study the effect of various possible interferents and their results were considered in the design of the instrument so as to achieve the desired measurement precision of 1%. Specially designed gas cells and a custom made gas filling rig were also developed. A complete virtual interface for both instrument control and data acquisition was implemented in LABVIEW. Initial tests were used to validate the theory and a basic working device was demonstrated.

Paper Details

Date Published: 6 February 2007
PDF: 12 pages
Proc. SPIE 6430, Advanced Biomedical and Clinical Diagnostic Systems V, 64300L (6 February 2007); doi: 10.1117/12.700168
Show Author Affiliations
A. Kannath, Univ. of Southampton (United Kingdom)
H. N. Rutt, Univ. of Southampton (United Kingdom)


Published in SPIE Proceedings Vol. 6430:
Advanced Biomedical and Clinical Diagnostic Systems V
Ramesh Raghavachari; Tuan Vo-Dinh; Warren S. Grundfest; David A. Benaron; Gerald E. Cohn, Editor(s)

© SPIE. Terms of Use
Back to Top