Share Email Print
cover

Proceedings Paper

Nonlinear response in optical materials using ultrashort laser technology
Author(s): David Ashkenasi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Ultra-short lasers at elevated peek powers combined with fairly moderate single pulse energies are able to induce very interesting non-linear optical interaction channels, such as multi-photon absorption, self-phase modulation and self focusing. These non-linear optical effects can be utilized to obtain surprising material reactions inside the bulk of optical dielectrics. With a certain degree of physical understanding and engineering experience, the material reaction can be controlled and optimized to generate e.g. internal markings, wave guides, 3d data storages or diffractive optical elements. As an example, laser-induced coloring of several type of glasses have been obtained at ultra-short bulk excitation, showing a strong resemblance to surface defects observed in most glasses after ionizing (e.g. X- and gamma-ray) hard radiation treatment. These laser-induced "color-centers" can alter the optical properties in dispersion and extinction locally in a well-defined volume, which can be described as a local change in the complex refractory index (n+ik). The implementation of this new technology can be characterized as "nik-engineering". New experimental results on laser-induced sub-surface modifications utilizing near infrared femtosecond and picosecond laser pulses inside different types of transparent dielectrics are presented and discussed in respect to the potential of "nik-engineering".

Paper Details

Date Published: 13 March 2007
PDF: 8 pages
Proc. SPIE 6458, Photon Processing in Microelectronics and Photonics VI, 64580P (13 March 2007); doi: 10.1117/12.700137
Show Author Affiliations
David Ashkenasi, Laser- and Medical Technology GmbH Berlin (Germany)


Published in SPIE Proceedings Vol. 6458:
Photon Processing in Microelectronics and Photonics VI
David B. Geohegan; Craig B. Arnold; Tatsuo Okada; Frank Träger; Jan J. Dubowski; Michel Meunier; Andrew S. Holmes, Editor(s)

© SPIE. Terms of Use
Back to Top