Share Email Print
cover

Proceedings Paper

Forces and binding in a two-mirror system
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Two mirrors guiding light experience attractive or repulsive forces according to the eigenmode type of symmetry, but regardless of the specific details of the guiding structure. A transverse evanescent mode (TM or TE) that has an anti-symmetric transverse field causes repulsion, while attraction occurs when the mode has a symmetric transverse field. Transverse propagating modes, however, are always repulsive. One possible application for this phenomenon is to use a symmetric mode supported, for instance, by two properly designed Bragg mirrors. By varying the wavelength of the mode injected into the waveguide, it is possible to cross the light-line and switch between attraction and repulsion. If the mirror is free to move in the transverse direction, then this is a scheme for controlling its motion. Another possibility is to create a stable equilibrium with a superposition of transverse evanescent symmetric and anti-symmetric modes. For this purpose, a more appealing configuration than Bragg mirrors is a waveguide that consists of two dielectric slabs where the light is guided by total internal reflection. Each slab is trapped in a potential well resulting in optical binding by eigenmodes.

Paper Details

Date Published: 9 February 2007
PDF: 10 pages
Proc. SPIE 6483, Complex Light and Optical Forces, 648303 (9 February 2007); doi: 10.1117/12.699997
Show Author Affiliations
Amit Mizrahi, Technion-Israel Institute of Technology (Israel)
Levi Schächter, Technion-Israel Institute of Technology (Israel)


Published in SPIE Proceedings Vol. 6483:
Complex Light and Optical Forces
David L. Andrews; Enrique J. Galvez; Gerard Nienhuis, Editor(s)

© SPIE. Terms of Use
Back to Top