Share Email Print

Proceedings Paper

Drosophila as an unconventional substrate for microfabrication
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present the application of Drosophila fruit flies as an unconventional substrate for microfabrication. Drosophila by itself represents a complex system capable of many functions not attainable with current microfabrication technology. By using Drosophila as a substrate, we are able to capitalize on these natural functions while incorporating additional functionality into a superior hybrid system. In the following, development of microfabrication processes for Drosophila substrates is discussed. In particular, results of a study on Drosophila tolerance to vacuum pressure during multiple stages of development are given. A remarkable finding that adult Drosophila may withstand up to 3 hours of exposure to vacuum with measurable survival is noted. This finding opens a number of new opportunities for performing fabrication processes, similar to the ones performed on a silicon wafer, on a fruit fly as a live substrate. As a model microfabrication process, it is shown how a collection of Drosophila can be made to self-assemble into an array of microfabricated recesses on a silicon wafer and how a shadow mask can be used to thermally evaporate 100 nm of indium on flies. The procedure resulted in the production of a number of live flies with a pre-designed metal micropattern on their wings. This demonstration of vacuum microfabrication on a live organism provides the first step towards the development of a hybrid biological/solid-state manufacturing process for complex microsystems.

Paper Details

Date Published: 8 February 2007
PDF: 11 pages
Proc. SPIE 6464, MEMS/MOEMS Components and Their Applications IV, 646403 (8 February 2007); doi: 10.1117/12.699414
Show Author Affiliations
Angela J. Shum, Univ. of Washington (United States)
Babak A. Parviz, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 6464:
MEMS/MOEMS Components and Their Applications IV
Srinivas A. Tadigadapa; Reza Ghodssi; Albert K. Henning, Editor(s)

© SPIE. Terms of Use
Back to Top