Share Email Print

Proceedings Paper

A microfluidic MEMS sensor for the measurement of density and viscosity at high pressure
Author(s): Christopher Harrison; Antoine Fornari; Hua Chen; Seungoh Ryu; Anthony Goodwin; Kai Hsu; Frederic Marty; Bruno Mercier
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present a sensor fabricated with MEMS (Micro-Electro-Mechanical Systems) technology that quickly measures fluid density and viscosity. This sensor is fabricated inside of a microfluidic channel through which the fluid to be measured passes. The operational principal involves the influence of the fluid on the resonance frequency and quality factor of a vibrating plate oscillating normal to its plane. By performing measurements in liquids we have demonstrated operability in fluids with densities between (0.6 to 1.5) g/cc and viscosities between (0.4 to 100) cP. Such measurements are required to determine the economic feasibility of recovering hydrocarbon from subterranean strata. There are numerous examples in the literature of sensors fabricated by the methods of MEMS that are claimed to measure both density and viscosity of fluids, but in most cases, the accuracy of such sensors is not been demonstrated in a wide range of fluids and moreover, their use in non-laboratory environments has not been proven.1,2,3 Here we show that it is possible to design and package a sensor that can function with high accuracy in extreme environments while providing useful information.

Paper Details

Date Published: 22 January 2007
PDF: 13 pages
Proc. SPIE 6465, Microfluidics, BioMEMS, and Medical Microsystems V, 64650U (22 January 2007); doi: 10.1117/12.698976
Show Author Affiliations
Christopher Harrison, Schlumberger-Doll Research (United States)
Antoine Fornari, Schlumberger-Doll Research (United States)
Hua Chen, Schlumberger-Doll Research (United States)
Seungoh Ryu, Schlumberger-Doll Research (United States)
Anthony Goodwin, Sugar Land Product Ctr. (United States)
Kai Hsu, Sugar Land Product Ctr. (United States)
Frederic Marty, École Supérieure d'Ingénieures en Électronique et Électrotechnique (France)
Bruno Mercier, École Supérieure d'Ingénieures en Électronique et Électrotechnique (France)

Published in SPIE Proceedings Vol. 6465:
Microfluidics, BioMEMS, and Medical Microsystems V
Ian Papautsky; Wanjun Wang, Editor(s)

© SPIE. Terms of Use
Back to Top