Share Email Print
cover

Proceedings Paper

Amplitude decay of photoacoustic signals in biological tissue when irradiated by nanosecond laser pulses
Author(s): Richard J. Dewhurst; Teng Li; Grzegorz Gondek
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we report on sequential decreases in the amplitude of photoacoustic (PA) signals from nanosecond laser pulse irradiation of various samples. These samples include biological tissues, such as dental-enamel and chicken/turkey breast as well as some non-biological samples. Laser energy densities in the range of 80mJ/cm2 to 300mJ/cm2 were used in our experiments, typical of those used in PA imaging regimes. Induced temperature rises are modelled to show that the average temperature rise for each pulse in those biological tissues is less than one degree centigrade. Measurements reveal a rapid decay of photoacoustic signals within the first few laser pulses absorbed by the sample and this decay is irreversible in the short term. The phenomenon indicates that laser irradiation interacts with biological samples, causing long-term physical changes that can be attributed to a reduction of optical absorption within the samples.

Paper Details

Date Published: 13 February 2007
PDF: 12 pages
Proc. SPIE 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 643723 (13 February 2007); doi: 10.1117/12.698887
Show Author Affiliations
Richard J. Dewhurst, The Univ. of Manchester (United Kingdom)
Teng Li, The Univ. of Manchester (United Kingdom)
Grzegorz Gondek, The Univ. of Manchester (United Kingdom)
Uniwersytet Gdanski (Poland)


Published in SPIE Proceedings Vol. 6437:
Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top