Share Email Print
cover

Proceedings Paper

Deep reflection-mode photoacoustic imaging and resolution scalability with depth
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A deep reflection-mode photoacoustic (PA) imaging system was designed and implemented to visualize deep structures in biological tissues. To achieve good penetration depth, we chose near IR laser pulses at 804 nm wavelength for the generation of photoacoustic waves. To avoid overshadowing the deep PA signals by the surface PA signals, we employed dark-field illumination. To achieve good lateral resolution, we chose spherically focused high-numericalaperture ultrasonic transducers with 5 MHz or 10 MHz center frequencies. By using these transducers, we achieved 153 &mgr;m and 130 &mgr;m axial resolutions, respectively, at 19.5 mm depth in 10% porcine gelatin containing 1% intralipid. The system was applied to imaging internal organs of small animals. Compared with our previous high-frequency (50-MHz) photoacoustic microscope, we scaled up the imaging depth while maintaining the ratio of the imaging depth to axial resolution more than 100. In addition, we studied the scalability of the imaging depth and the resolution with ultrasound frequency.

Paper Details

Date Published: 13 February 2007
PDF: 7 pages
Proc. SPIE 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 643722 (13 February 2007); doi: 10.1117/12.698823
Show Author Affiliations
Kwang Hyun Song, Washington Univ. in St. Louis (United States)
Lihong V. Wang, Washington Univ. in St. Louis (United States)


Published in SPIE Proceedings Vol. 6437:
Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top