Share Email Print

Proceedings Paper

A generalized 2D and 3D white LED device simulator integrating photon recycling and luminescent spectral conversion effects
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We report new capabilities in our Sentaurus-Device1 simulator for modeling arbitrarily shaped 2D/3D white LEDs by coupling novel photon recycling, luminescent spectral conversion effects and electrical transport self consistently. In our simulator, the spontaneous emission spectra are embedded in ray tracing, and are allowed to evolve as the rays traverse regions of stimulated gain, absorption, and luminescence. In the active quantum well (QW), the spontaneous emission spectrum can be partially amplified by stimulated gain within a certain energy range and absorbed at higher energies, resulting in a modified spontaneous spectrum. The amplified and absorbed parts of the spectrum give a net recombination/generation rate that is feedback to the electrical transport via the continuity equations. This conceives a novel photon recycling model that includes amplified spontaneous emission. The modified spontaneous spectrum can further be altered by spectral conversion in the luminescent region. In this manner, we capture the important physical effects in white LED structures in a fully coupled and self-consistent electro-opto-thermal simulation.

Paper Details

Date Published: 13 February 2007
PDF: 10 pages
Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI, 64860T (13 February 2007); doi: 10.1117/12.698687
Show Author Affiliations
Wei-Choon Ng, Synopsys, Inc. (United States)
Gergö Letay, Synopsys Switzerland, LLC (Switzerland)

Published in SPIE Proceedings Vol. 6486:
Light-Emitting Diodes: Research, Manufacturing, and Applications XI
Klaus P. Streubel; Heonsu Jeon, Editor(s)

© SPIE. Terms of Use
Back to Top