Share Email Print
cover

Proceedings Paper

Perspex Machine X: software development
Author(s): Sam Noble; Benjamin A. Thomas; James A. D. W. Anderson
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available on the world wide web. The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by similar geometrical and computational constraints in perspex and biological neurons.

Paper Details

Date Published: 29 January 2007
PDF: 12 pages
Proc. SPIE 6499, Vision Geometry XV, 64990K (29 January 2007); doi: 10.1117/12.698166
Show Author Affiliations
Sam Noble, The Univ. of Reading (United Kingdom)
Benjamin A. Thomas, The Univ. of Reading (United Kingdom)
James A. D. W. Anderson, The Univ. of Reading (United Kingdom)


Published in SPIE Proceedings Vol. 6499:
Vision Geometry XV
Longin Jan Latecki; David M. Mount; Angela Y. Wu, Editor(s)

© SPIE. Terms of Use
Back to Top