Share Email Print

Proceedings Paper

Quantitative retrieval of crop water content under different soil moistures levels
Author(s): Jiahua Zhang; Wenjuan Guo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The characteristics of canopy spectrum and growth status of winter wheat under different soil moisture levels were studied in the field. Correlations between FMC and EWT of leaf and spectral reflectance of canopy were calculated and analysed quantitatively, and the sensitive bands to leaf water were found. Simple ratio water index(SWI)and normalized difference water index(NDWI) were constructed with the sensitive bands. Simple statistical models at different growth stages were established using spectral indices data and FMC and EWT of leaf. Bands centered at 469, 645, 700 and 710nm of VIS region, bands centered at 760, 815, 855, 930, 1075, 1100nm of NIR region and bands centred 550, 1600, 1640, 1750, 2130nm of SWIR were defined as sensitive bands to estimate leaf water content. These bands centered atmosphere windows had the potential to be applied in monitoring canopy leaf content of crop. The SWI and NDWI constructed with the sensitive bands could estimate leaf content more accurately than single band. The four band MODIS combined index: R (1640,2130) / ND (855,555) showed a good indicator to detect canopy water content of winter wheat.

Paper Details

Date Published: 11 December 2006
PDF: 9 pages
Proc. SPIE 6411, Agriculture and Hydrology Applications of Remote Sensing, 64110D (11 December 2006); doi: 10.1117/12.697957
Show Author Affiliations
Jiahua Zhang, Chinese Academy of Meteorological Sciences (China)
Wenjuan Guo, Chinese Academy of Meteorological Sciences (China)

Published in SPIE Proceedings Vol. 6411:
Agriculture and Hydrology Applications of Remote Sensing
Robert J. Kuligowski; Jai S. Parihar; Genya Saito, Editor(s)

© SPIE. Terms of Use
Back to Top