Share Email Print
cover

Proceedings Paper

Design and optimization of programmable lens array for adaptive optics
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The ability of a liquid-crystal spatial light modulator (LC-SLM) to generate lens and lens arrays of variable focal lengths and selectable fields of view (FOV) makes them excellent candidates for many adaptive optics applications including free-space optical telecommunications, astronomy and retinal imaging. In this paper, we report a range of dynamic lens and lens array designs and optimization using a LC-SLM as an adaptive Hartmann-Shack wavefront sensor. The measured wavefront aberration is reconstructed using Zernike polynomials through the application of its conjugated wavefront onto the LC-SLM to achieve dynamic wavefront detection and correction. Computer algorithms based on Fourier transformation for lens synthesis have been developed to address the LC-SLM and to generate appropriate phase holograms that emulate lens and/or lenslet arrays with programmable focal lengths, tilting angles and diameters. The classic least-square (LS) method is used to determine the Zernike polynomial coefficients for the reconstruction of the aberrated wavefront. Experimental results demonstrate the dynamic generation of lens arrays of variable focal lengths. We also experimentally characterize the phase modulation performance and wavefront generation performance of the LC-SLM through the application of Zernike functions and as diffractive optical elements (DOEs) for dynamic wavefront generation.

Paper Details

Date Published: 11 January 2007
PDF: 9 pages
Proc. SPIE 6414, Smart Structures, Devices, and Systems III, 64140K (11 January 2007); doi: 10.1117/12.696365
Show Author Affiliations
Zhenglin Wang, Edith Cowan Univ. (Australia)
Seow Hwang Eng, Edith Cowan Univ. (Australia)
Kamal Alameh, Edith Cowan Univ. (Australia)


Published in SPIE Proceedings Vol. 6414:
Smart Structures, Devices, and Systems III
Said F. Al-Sarawi, Editor(s)

© SPIE. Terms of Use
Back to Top