Share Email Print

Proceedings Paper

Future GOES-R global ground receivers
Author(s): P. A. Dafesh; E. Grayver
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Aerospace Corporation has developed an end-to-end testbed to demonstrate a wide range of modern modulation and coding alternatives for future broadcast by the GOES-R Global Rebroadcast (GRB) system. In particular, this paper describes the development of a compact, low cost, flexible GRB digital receiver that was designed, implemented, fabricated, and tested as part of the development. This receiver demonstrates a 10-fold increase in data rate compared to the rate achievable by the current GOES generation, without a major impact on either cost or size. The digital receiver is integrated on a single PCI card with an FPGA device, and analog-to-digital converters. It supports a wide range of modulations (including 8-PSK and 16-QAM) and turbo coding. With appropriate FPGA firmware and software changes, it can also be configured to receive the current (legacy) GOES signals. The receiver has been validated by sending large image files over a high-fidelity satellite channel emulator, including a space-qualified power amplifier and a white noise source. The receiver is a key component of a future GOES-R weather receiver system (also called user terminal) that includes the antenna, low-noise amplifier, downconverter, filters, digital receiver, and receiver system software. This work describes this receiver proof of concept and its application to providing a very credible estimate of the impact of using modern modulation and coding techniques in the future GOES-R system.

Paper Details

Date Published: 1 September 2006
PDF: 12 pages
Proc. SPIE 6300, Satellite Data Compression, Communications, and Archiving II, 63000D (1 September 2006); doi: 10.1117/12.694920
Show Author Affiliations
P. A. Dafesh, The Aerospace Corp. (United States)
E. Grayver, The Aerospace Corp. (United States)

Published in SPIE Proceedings Vol. 6300:
Satellite Data Compression, Communications, and Archiving II
Roger W. Heymann; Charles C. Wang; Timothy J. Schmit, Editor(s)

© SPIE. Terms of Use
Back to Top