Share Email Print
cover

Proceedings Paper

Actual evapotranspiration estimation by means of airborne and satellite remote sensing data
Author(s): Giuseppe Ciraolo; Guido D'Urso; Mario Minacapilli
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

During the last the two decades, the scientific community developed detailed mathematical models for simulating land surface energy fluxes and crop evapotranspiration rates by means of a energy balance approach. These models can be applied in large areas and with a spatial distributed approach using surface brightness temperature and some ancillary data retrieved from satellite/airborne remote sensed imagery. In this paper a district scale application in combination with multispectral (LandaSat 7 TM data) and hyperspectral airborne MIVIS data has been carried out to test the potentialities of two different energy balance models to estimate evapotranspiration fluxes from a set of typical Mediterranean crops (wine, olive, citrus). The impact of different spatial and radiometric resolutions of MIVIS (3m x 3m) and LandSat (60m x 60m) on models-derived fluxes has been investigated to understand the roles and the main conceptual differences between the two models which respectively use a "single-layer" (SEBAL) and a "two-layer" (TS) schematisation.

Paper Details

Date Published: 17 October 2006
PDF: 11 pages
Proc. SPIE 6359, Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII, 63590Y (17 October 2006); doi: 10.1117/12.689419
Show Author Affiliations
Giuseppe Ciraolo, Univ. di Palermo (Italy)
Guido D'Urso, Univ. of Naples Federico II (Italy)
Mario Minacapilli, Univ. di Palermo (Italy)


Published in SPIE Proceedings Vol. 6359:
Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII
Manfred Owe; Guido D'Urso; Christopher M. U. Neale; Ben T. Gouweleeuw, Editor(s)

© SPIE. Terms of Use
Back to Top