Share Email Print
cover

Proceedings Paper

Windowing technique in FM radar realized by FPGA for better target resolution
Author(s): Volodymyr I. Ponomaryov; Enrique Escamilla-Hernandez; Victor F. Kravchenko
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Remote sensing systems, such as SAR usually apply FM signals to resolve nearly placed targets (objects) and improve SNR. Main drawbacks in the pulse compression of FM radar signal that it can add the range side-lobes in reflectivity measurements. Using weighting window processing in time domain it is possible to decrease significantly the side-lobe level (SLL) of output radar signal that permits to resolve small or low power targets those are masked by powerful ones. There are usually used classical windows such as Hamming, Hanning, Blackman-Harris, Kaiser-Bessel, Dolph-Chebyshev, Gauss, etc. in window processing. Additionally to classical ones in here we also use a novel class of windows based on atomic functions (AF) theory. For comparison of simulation and experimental results we applied the standard parameters, such as coefficient of amplification, maximum level of side-lobe, width of main lobe, etc. In this paper we also proposed to implement the compression-windowing model on a hardware level employing Field Programmable Gate Array (FPGA) that offers some benefits like instantaneous implementation, dynamic reconfiguration, design, and field programmability. It has been investigated the pulse compression design on FPGA applying classical and novel window technique to reduce the SLL in absence and presence of noise. The paper presents simulated and experimental examples of detection of small or nearly placed targets in the imaging radar. Paper also presents the experimental hardware results of windowing in FM radar demonstrating resolution of the several targets for classical rectangular, Hamming, Kaiser-Bessel, and some novel ones: Up(x), fup4(x)•D3(x), fup6(x)•G3(x), etc. It is possible to conclude that windows created on base of the AFs offer better decreasing of the SLL in cases of presence or absence of noise and when we move away of the main lobe in comparison with classical windows.

Paper Details

Date Published: 28 September 2006
PDF: 12 pages
Proc. SPIE 6363, SAR Image Analysis, Modeling, and Techniques VIII, 63630F (28 September 2006); doi: 10.1117/12.689300
Show Author Affiliations
Volodymyr I. Ponomaryov, National Polytechnic Institute of Mexico (Mexico)
Enrique Escamilla-Hernandez, National Polytechnic Institute of Mexico (Mexico)
Victor F. Kravchenko, Institute of Radio Engineering and Electronics (Russia)


Published in SPIE Proceedings Vol. 6363:
SAR Image Analysis, Modeling, and Techniques VIII
Claudia Notarnicola; Sune R. J. Axelsson; Francesco Posa, Editor(s)

© SPIE. Terms of Use
Back to Top