Share Email Print
cover

Proceedings Paper

Optical network security: countermeasures in view of attacks
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The huge amount of traffic transportable by the next generation optical network is vulnerable to attacks, as is discerned from an alarmingly increase of incidents. The types of attack are expected to range from the typical eavesdropping and service denial to more sophisticated source mimicking. As a consequence, modern encrypted methods refuge to highly sophisticated methods that emanate from quantum mechanics, known as quantum cryptography. However, the sophistication and elegance of quantum-cryptography makes the assumption that the transmission medium and the components involved on the link are perfect and that the properties of photons and the signal intensity do not change during propagation over many kilometers. Therefore, a practical implementation of Q-C may exhibit its own vulnerabilities due to non-linear interactions between photons and medium. Therefore, in addition to the sophistication of QKD and encryption algorithms, an additional function is needed that detects malicious intervention on the transmission link as well as a countermeasure strategy that outsmarts the attacker. In this paper, we consider a practical optical signal that consists of multiple photons, we consider a pragmatic medium with nonlinearities, scattering and absorption centers. We describe a case of service denial with Q-C, a method by which an attack is detected, and we develop a countermeasure strategy outsmarting the attacker. Our method assumes that the data channel is encrypted using sophisticated algorithms.

Paper Details

Date Published: 28 September 2006
PDF: 7 pages
Proc. SPIE 6402, Optics and Photonics for Counterterrorism and Crime Fighting II, 640208 (28 September 2006); doi: 10.1117/12.689169
Show Author Affiliations
Stamatios V. Kartalopoulos, The Univ. of Oklahoma (United States)


Published in SPIE Proceedings Vol. 6402:
Optics and Photonics for Counterterrorism and Crime Fighting II
Colin Lewis; Gari P. Owen, Editor(s)

© SPIE. Terms of Use
Back to Top