Share Email Print
cover

Proceedings Paper

Imaging behavior of high-transmission attenuating phase-shift mask films
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The properties of phase shifting attenuator films are quantified in a variety of ways. Transverse dimensions are measured by optical microscopes or scanning electron microscopes. Vertical dimension and profiles are measured by atomic force microscopes or indirectly by optical scatterometry. The complex refractive index of an attenuator film can be characterized by ellipsometry or by spectroscopic analysis of reflected and transmitted light. Transmission and phase measurements can be made with optical interferometric techniques. Data acquired in these ways can be used as inputs to simulation programs to model the image forming characteristics of the films. For simplicity and speed of calculation, the simulation programs typically use a thin-mask approximation, in which the vertical absorber geometry is ignored and the phase shifting attenuator regions are characterized only by their transmission, phase shift, and two-dimensional geometric shapes. Inclusion of the full three-dimensional profile and complex refractive index of the absorber can be done, but at the cost of greatly increased calculation time and a loss of the simplicity of understanding afforded by the thin-mask model. For example, the thin-mask model assumes that every geometrical feature etched into a given attenuator film will have the same phase and transmission properties. Comparison of thin-mask modeling results with the full three dimensional model shows that this assumption is not true. The effective dimensional bias, phase, transmission, and defocus are strong functions of the feature size, pitch, and complex refractive index of the film. Three dimensional simulations were run for several commercial and developmental high-transmission phase-shifting attenuator films. The effective phase and dimensional printing bias were calculated as a function of pitch for each film. Surprising differences were found in the results for the various film types.

Paper Details

Date Published: 20 October 2006
PDF: 9 pages
Proc. SPIE 6349, Photomask Technology 2006, 63491A (20 October 2006); doi: 10.1117/12.686231
Show Author Affiliations
Michael Hibbs, IBM Systems and Technology Group (United States)
Satoru Nemoto, Toppan Electronics, Inc. (United States)
Toru Komizo, Toppan Electronics, Inc. (United States)


Published in SPIE Proceedings Vol. 6349:
Photomask Technology 2006
Patrick M. Martin; Robert J. Naber, Editor(s)

© SPIE. Terms of Use
Back to Top