Share Email Print

Proceedings Paper

Simulating the process of dielectric substrate surface cleaning in high-voltage gas discharge plasma
Author(s): N. L. Kazanskiy; V. A. Kolpakov; S. V. Kritchevskiy
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The mechanism of dielectric substrate surface cleaning in low-temperature high-voltage gas discharge plasma is theoretically and experimentally investigated. It is shown that the main technological factors that affect surface purity are the time of exposure, discharge current, accelerating voltage. A unique relationship is obtained that relates the value of impurity surface concentration variation to the speed of removing the impurities and exposure duration. It is shown that experimental data agree well with this relationship. It is established that minimal values of impurity surface concentration are achieved at the exposure time no less than 10 seconds, discharge current no less than 3 mA and accelerating voltage of 2-3 kV. An actual example of etching silicon dioxide grooves in high-voltage gas discharge plasma in the mixture of CF4 and O2 is taken to show how substrate surface purity affects geometric parameters of microstructures formed. The results of the investigation made it possible to develop a method of cleaning dielectric substrate surface in high-voltage gas discharge plasma. The method is characterized by low cost and energy consumption. It makes it possible to clean a surface up to the level of 10-9 g/cm2.

Paper Details

Date Published: 10 June 2006
PDF: 8 pages
Proc. SPIE 6260, Micro- and Nanoelectronics 2005, 62601V (10 June 2006); doi: 10.1117/12.683578
Show Author Affiliations
N. L. Kazanskiy, Image Processing Systems Institute (Russia)
V. A. Kolpakov, Samara State Aerospace Univ. (Russia)
S. V. Kritchevskiy, Samara State Aerospace Univ. (Russia)

Published in SPIE Proceedings Vol. 6260:
Micro- and Nanoelectronics 2005
Kamil A. Valiev; Alexander A. Orlikovsky, Editor(s)

© SPIE. Terms of Use
Back to Top