Share Email Print
cover

Proceedings Paper

Comparative study of projection/back-projection schemes in cryo-EM tomography
Author(s): Yu Liu; Jong Chul Ye
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In the cryo-EM tomography, the projection and back-projection are essential steps in reconstruction the 3D structure of the virus and macromolecules. Distance driven method (DD) is the latest projection /backprojection algorithm originally employed for x-ray computed tomography. This paper is mainly concerned about employing this algorithm to the cryo-EM tomography for reconstruction performance improvement. Existing algorithms used in cryo-EM are pixel-driven and ray driven projection/backprojection, etc. These methods are generally quite time consuming because of their high computational complexity. Furthermore, interpolation artifacts are usually noticeable when the sufficient view and detector samples are not available. The DD is originally proposed to overcome these drawbacks. The interpolation process in DD is done by calculating the overlap area between the detector and pixel boundaries. This procedure largely removes the interpolation artifacts, and reduces the computational complexity significantly. Furthermore, it guarantees that the projection and backprojection are adjoint to each other - a desired property to guarantee the convergence of the iterative reconstruction algorithm. However, unlike the x-ray computed tomography, the cryo-EM tomography problem generally has limited number of the projections, and projection angles are randomly distributed over 4pi steradian. Therefore, the conventional DD should be modified. Rather than computing the boundary overlap in the previous 3-D DD method, we propose a novel DD algorithm based on volume overlap. CCMV virus model is used as testing example. Results are visualized using AMIRA software. Analysis is made upon the advantages and drawbacks of both the existing approaches and distance driven method.

Paper Details

Date Published: 5 September 2006
PDF: 10 pages
Proc. SPIE 6316, Image Reconstruction from Incomplete Data IV, 631606 (5 September 2006); doi: 10.1117/12.682287
Show Author Affiliations
Yu Liu, Korea Advanced Institute of Science and Technology (South Korea)
Jong Chul Ye, Korea Advanced Institute of Science and Technology (South Korea)


Published in SPIE Proceedings Vol. 6316:
Image Reconstruction from Incomplete Data IV
Philip J. Bones; Michael A. Fiddy; Rick P. Millane, Editor(s)

© SPIE. Terms of Use
Back to Top