Share Email Print

Proceedings Paper

A polarization-independent liquid crystal spatial light modulator
Author(s): Michael J. Escuti; W. Michael Jones
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report our recent experimental results on a new polarization-independent, liquid crystal (LC) spatial light modulator (SLM). Based on a periodic nematic director profile, the modulator acts as a switchable diffraction grating with only 0th- and ±1st-orders at efficiencies of ≥ 99%, manifests contrast ratios ~600:1 (for laser light), switching times of ~2ms, and threshold voltages of < 1V/μm. Results of modulating broadband, unpolarized light from light-emitting-diodes (LEDs) indicates that contrast ratios are ~100:1 so far. Note that incoherent scattering for visible light is very low, and that samples are typically completely defect-free over large areas. An important feature of this diffractive polarization-independent SLM compared to its predecessors is its potential to achieve much larger diffraction angles, which enables a larger aperture (and etendue). In addition to describing the fabrication and characteristics of this SLM in general, we report on our initial progress in implementing a projection display system. All of the surprising and useful results from this grating arise from its continuous nematic director, which is most properly classed as a switchable polarization grating (PG). The SLM described here offers the inherent advantages polarization-independence at the pixel-level and fairly fast switching with nematic LCs, while maintaining similar switching voltages, cell thickness, contrast ratios, and materials.

Paper Details

Date Published: 15 September 2006
PDF: 8 pages
Proc. SPIE 6332, Liquid Crystals X, 63320M (15 September 2006); doi: 10.1117/12.681213
Show Author Affiliations
Michael J. Escuti, North Carolina State Univ. (United States)
W. Michael Jones, North Carolina State Univ. (United States)

Published in SPIE Proceedings Vol. 6332:
Liquid Crystals X
Iam-Choon Khoo, Editor(s)

© SPIE. Terms of Use
Back to Top