Share Email Print
cover

Proceedings Paper

Comparison of particulate verification techniques study
Author(s): Rachel Rivera
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The efficacy of five particulate verification techniques on four types of materials was studied. Statistical Analysis Software/JMP 6.0 was used to create a statistically valid design of experiments. In doing so, 35 witness coupons consisting of the four types of materials being studied, were intentionally contaminated with particulate fallout. Image Analysis was used to characterize the extent of particulate fallout on the coupons and was used to establish a baseline, or basis of comparison, against the five techniques that were studied. The five particulate verification techniques were the Tapelift, the Particulate Solvent Rinse, the GelPak lift, an in-line vacuum filtration probe, and the Infinity Focusing Microscope (IFM). The four types of materials consisted of magnesium flouride (MgF2) coated mirrors, composite coated silver aluminum (CCAg), Z93 and NS43G coated aluminum, and silicon (si) wafers. The vacuum probe was determined to be most effective for Z93, the tapelift or vacuum probe for MgF2, and the GelPak Lift for CCAg and si substrates. A margin of error for each technique, based on experimental data from two experiments, for si wafer substrates, yielded the following: Tapelift - 67%, Solvent Rinse - 58%, GelPak- 26%, Vacuum Probe - 93%, IFM-to be determined.

Paper Details

Date Published: 7 September 2006
PDF: 11 pages
Proc. SPIE 6291, Optical Systems Degradation, Contamination, and Stray Light: Effects, Measurements, and Control II, 629108 (7 September 2006); doi: 10.1117/12.681122
Show Author Affiliations
Rachel Rivera, NASA Goddard Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 6291:
Optical Systems Degradation, Contamination, and Stray Light: Effects, Measurements, and Control II
O. Manuel Uy; John C. Fleming; Michael G. Dittman, Editor(s)

© SPIE. Terms of Use
Back to Top