Share Email Print

Proceedings Paper

Analytic structure and generalized duality relations for a family of hyperboloidal beams and supporting mirrors of potential interest for future gravitational wave detection interferometers
Author(s): Vincenzo Galdi; Giuseppe Castaldi; Vincenzo Pierro; Innocenzo M. Pinto; Juri Agresti; Erika D'Ambrosio; Riccardo DeSalvo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For the baseline design of future gravitational wave detection interferometers, use of optical cavities with nonsphericalmirrors supporting flat-top ("mesa") beams, potentially capable of mitigating the thermal noise of the mirrors, has recently drawn a considerable attention. To reduce the severe tilt-instability problems affecting the originally conceived nearly-flat, "Mexican-hat-shaped" mirror configuration, K. S. Thorne proposed a nearly-concentric mirror configuration capable of producing the same mesa beam profile on the mirror surfaces. Subsequently, Bondarescu and Thorne introduced a generalized construction that leads to a one-parameter family of "hyperboloidal" beams which allows continuous spanning from the nearly-flat to the nearly-concentric mesa beam configurations. This paper is concerned with a study of the analytic structure of the above family of hyperboloidal beams. Capitalizing on certain results from the applied optics literature on flat-top beams, a physically-insightful and computationally-effective representation is derived in terms of rapidly-converging Gauss-Laguerre expansions. Moreover, the functional relation between two generic hyperboloidal beams is investigated. This leads to a generalization (involving fractional Fourier transform operators of complex order) of some recently discovered duality relations between the nearly-flat and nearly-concentric mesa configurations. Possible implications and perspectives for the advanced Laser Interferometer Gravitational-wave Observatory (LIGO) optical cavity design are discussed.

Paper Details

Date Published: 7 September 2006
PDF: 12 pages
Proc. SPIE 6290, Laser Beam Shaping VII, 629004 (7 September 2006); doi: 10.1117/12.679412
Show Author Affiliations
Vincenzo Galdi, Univ. of Sannio (Italy)
Giuseppe Castaldi, Univ. of Sannio (Italy)
Vincenzo Pierro, Univ. of Sannio (Italy)
Innocenzo M. Pinto, Univ. of Sannio (Italy)
Juri Agresti, California Institute of Technology (United States)
Univ. of Pisa (Italy)
Erika D'Ambrosio, California Institute of Technology (United States)
Riccardo DeSalvo, California Institute of Technology (United States)

Published in SPIE Proceedings Vol. 6290:
Laser Beam Shaping VII
Fred M. Dickey; David L. Shealy, Editor(s)

© SPIE. Terms of Use
Back to Top