Share Email Print
cover

Proceedings Paper

Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI
Author(s): Simona Consoli; Giuseppe Luigi Cirelli; Attilio Toscano
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The structure of vegetation is paramount in regulating the exchange of mass and energy across the biosphereatmosphere interface. In particular, changes in vegetation density affected the partitioning of incoming solar energy into sensible and latent heat fluxes that may result in persistent drought through reductions in agricultural productivity and in the water resources availability. Limited research with citrus orchards has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigation when crop coefficient (Kc) estimate, derived from remotely sensed multispectral vegetation indices (VIs), are incorporated into irrigation-scheduling algorithms. The purpose of this article is the application of an empirical reflectance-based model for the estimation of Kc and evapotranspiration fluxes (ET) using ground observations on climatic data and high-resolution VIs from ASTER TERRA satellite imagery. The remote sensed Kc data were used in developing the relationship with the normalized difference vegetation index (NDVI) for orange orchards during summer periods. Validation of remote sensed data on ET, Kc and vegetation features was deal through ground data observations and the resolution of the energy balance to derive latent heat flux density (λE), using measures of net radiation (Rn) and soil heat flux density (G) and estimate of sensible heat flux density (H) from high frequency temperature measurements (Surface Renewal technique). The chosen case study is that of an irrigation area covered by orange orchards located in Eastern Sicily (Italy) during the irrigation seasons 2005 and 2006.

Paper Details

Date Published: 17 October 2006
PDF: 11 pages
Proc. SPIE 6359, Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII, 63590V (17 October 2006); doi: 10.1117/12.679382
Show Author Affiliations
Simona Consoli, Univ. of Catania (Italy)
Giuseppe Luigi Cirelli, Univ. of Catania (Italy)
Attilio Toscano, Univ. of Catania (Italy)


Published in SPIE Proceedings Vol. 6359:
Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII
Manfred Owe; Guido D'Urso; Christopher M. U. Neale; Ben T. Gouweleeuw, Editor(s)

© SPIE. Terms of Use
Back to Top