Share Email Print

Proceedings Paper

Understanding the electronic properties of hydrogen storage materials with photon-in/photon-out soft-x-ray spectroscopy
Author(s): Jinghua Guo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

How do we learn about chemisorption and physisorption of hydrides and the kinetics of hydrogen adsorption and desorption? These are profound challenges with us for decades. Soft-x-ray spectroscopy will be will be a unique tool to study the electronic properties of fundamental materials, nanoporous, and complex hydrides and in-situ study the kinetics of hydrogen adsorption and desorption. To facilitate the search for most efficient hydrogen-generation and - storage compounds, a fundamental understanding of the electronic properties is essential. Hydrogen strongly affects the electronic and structural properties of many materials. The electronic structure ultimately determines the properties of matter. Photon-in/photon-out soft-x-ray spectroscopy has been the subject to a revived interest owing to the new generation synchrotron facilities and high performance beamline and instruments. Soft-x-ray absorption spectroscopy (XAS) probes the local unoccupied electronic structure, soft-x-ray emission spectroscopy (XES) probes the local occupied electronic structure, and resonant inelastic soft-x-ray scattering (RIXS) probes the intrinsic low-energy excitations, such as charge transfer, proton energy transfer etc. A number of examples, including some recent experimental findings, then illustrate the potential of XAS and XES applications in hydrogen energy sciences.

Paper Details

Date Published: 8 September 2006
PDF: 11 pages
Proc. SPIE 6340, Solar Hydrogen and Nanotechnology, 634006 (8 September 2006); doi: 10.1117/12.679211
Show Author Affiliations
Jinghua Guo, Lawrence Berkeley National Lab. (United States)

Published in SPIE Proceedings Vol. 6340:
Solar Hydrogen and Nanotechnology
Lionel Vayssieres, Editor(s)

© SPIE. Terms of Use
Back to Top